42 research outputs found

    On the Acceleration of the Multi-Level Monte Carlo Method

    Full text link
    The multi-level Monte Carlo method proposed by M. Giles (2008) approximates the expectation of some functionals applied to a stochastic process with optimal order of convergence for the mean-square error. In this paper, a modified multi-level Monte Carlo estimator is proposed with significantly reduced computational costs. As the main result, it is proved that the modified estimator reduces the computational costs asymptotically by a factor (p/α)2(p/\alpha)^2 if weak approximation methods of orders α\alpha and pp are applied in case of computational costs growing with same order as variances decay

    Semi-Lagrangian schemes for linear and fully non-linear Hamilton-Jacobi-Bellman equations

    Full text link
    We consider the numerical solution of Hamilton-Jacobi-Bellman equations arising in stochastic control theory. We introduce a class of monotone approximation schemes relying on monotone interpolation. These schemes converge under very weak assumptions, including the case of arbitrary degenerate diffusions. Besides providing a unifying framework that includes several known first order accurate schemes, stability and convergence results are given, along with two different robust error estimates. Finally, the method is applied to a super-replication problem from finance.Comment: to appear in the proceedings of HYP201

    General order conditions for stochastic partitioned Runge-Kutta methods

    Get PDF
    In this paper stochastic partitioned Runge-Kutta (SPRK) methods are considered. A general order theory for SPRK methods based on stochastic B-series and multicolored, multishaped rooted trees is developed. The theory is applied to prove the order of some known methods, and it is shown how the number of order conditions can be reduced in some special cases, especially that the conditions for preserving quadratic invariants can be used as simplifying assumptions

    Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation

    Full text link
    The multilevel Monte Carlo path simulation method introduced by Giles ({\it Operations Research}, 56(3):607-617, 2008) exploits strong convergence properties to improve the computational complexity by combining simulations with different levels of resolution. In this paper we analyse its efficiency when using the Milstein discretisation; this has an improved order of strong convergence compared to the standard Euler-Maruyama method, and it is proved that this leads to an improved order of convergence of the variance of the multilevel estimator. Numerical results are also given for basket options to illustrate the relevance of the analysis.Comment: 33 pages, 4 figures, to appear in Discrete and Continuous Dynamical Systems - Series
    corecore